小升初數學必考知識點 歸納
漫長的學習生涯中,是不是聽到知識點,就立刻清醒了?知識點有時候特指教科書上或考試的知識。還在苦惱沒有知識點總結嗎?下面是小編為大家收集的小升初數學必考知識點 歸納,歡迎閱讀與收藏。
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O. 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有余數的除法: 被除數=商×除數+余數
二、方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
三、分數
分數:把單位“1”平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等于分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等于乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1.
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
四、體積和表面積
三角形的面積=底×高÷2. 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
五、數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
數與代數
百分數的應用
(1)求一個數比另一個數多(少)百分之幾的實際問題
①要點:一個數比另一個數多(少)百分之幾 = 一個數比另一個數多(少)的量另一個數
②例題:六年級男生有180人,女生有160人,男生比女生多百分之幾?女生比男生少百分只幾?
男生比女生多的人數 女生人數= 百分之幾 (180- 160) 160 = 12.5%
女生比男生少的人數 男生人數= 百分之幾 (180- 160) 180 11.1%
(2)納稅問題
①要點:應該繳納的稅款叫做應納稅額,應納稅額與各種收入的比率叫做稅率,
應納稅額 = 收入 稅率
②例題:張強編寫的書在出版后得到稿費1400元,稿費收入扣除800元后按14%的稅率繳納個人所得稅,張強應該繳納個人所得稅多少元?
(1400- 800)14% = 84(元)
(3)利息問題
①要點:存入銀行的錢叫做本金,取款時銀行除還給本金外,另外付給的錢叫做利息,利息占本金的百分率叫做利率。稅前應得利息 = 本金 利率 時間
②例題:叔叔今年存入銀行10萬元,定期二年,年利率4.50%,二年后到期,扣除利息稅5%,得到的利息能買一臺6000元的電腦嗎?
100000 4.5% 2 (1 -5%) = 8550(元)
8550元 6000元 得到的利息能買一臺6000元的電腦
(4)有關折扣問題
①要點:幾折就是十分之幾,也就是百分之幾十。商品現價 = 商品原價 折數。
②例題:一種衣服原價每件50元,現在打九折出售,每件售價多少元?
九折就是90%,5090%=500.9=45(元)
例題:一種衣服現在打九折出售,現在售價是45元,每件的原價是多少元?
九折就是90%,ⅹ90% = 45 ⅹ=50
(5)列方程解稍復雜的百分數實際問題
①要點:解答稍復雜的百分數應用題和稍復雜的分數應用題的解題思路、解題方法完全相同;解答已知比一個數多(少)百分之幾的數是多少,求這個數的實際問題,可以根據數量間的相等關系列方程求解;或者根據除法的意義,直接解答。
②例題:果園里的梨樹和蘋果樹共有360棵,其中的蘋果樹的棵樹是梨樹的棵樹的20%。蘋果樹和梨樹各有多少棵?
解:設梨樹有x棵,蘋果樹有20%x棵
x + 20%x = 360 x = 300
20%x = 300 20% = 60
答:梨樹有300棵,蘋果樹有60棵。
例題:某工廠六月份用煤60噸,六月份比五月份少用煤25%,五月份用煤多少噸?
解:設五月份用煤x噸
x - 25%x = 60 x = 80
答:五月份用煤80噸。
以上是小升初數學重要知識點,讀后您收獲多少呢?
1、 整數的意義
自然數和0都是整數。
2 、自然數
我們在數物體的時候,用來表示物體個數的1,2,3。叫做自然數。
一個物體也沒有,用0表示。0也是自然數
3、計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法
4 、數位
計數單位按照一定的順序排列起來,它們所占的位置叫做數位。
5、數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a 。例如15÷3=5,所以15能被3整除,3能整除15。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的因數。倍數和約數是相互依存的。
一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。
一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
能被2整除的數叫做偶數,不能被2整除的數叫做奇數。0也是偶數。自然數按能否被2 整除的特征可分為奇數和偶數。
一個數,如果只有1和它本身兩個因數,這樣的數叫做質數,100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其因數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
小升初數學知識總結:數量關系計算公式
單價數量=總價 2、單產量數量=總產量
速度時間=路程 4、工效時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數因數=積 一個因數=積另一個因數
被除數除數=商 除數=被除數商 被除數=商除數
長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米。
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
比
什么叫比:兩個數相除就叫做兩個數的比。如:25或3:6或1/3 比的前項和后項同時乘以或除以一個相同的數(0除外),比值不變。
什么叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等于兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:xy = k( k一定)或k / x = y
一、基本概念和符號:
1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有余數,那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號“|”,不能整除符號“ ”;因為符號“∵”,所以的符號“∴”;
二、整除判斷方法:
1.能被2、5整除:末位上的數字能被2、5整除。
2.能被4、25整除:末兩位的數字所組成的數能被4、25整除。
3.能被8、125整除:末三位的數字所組成的數能被8、125整除。
4.能被3、9整除:各個數位上數字的和能被3、9整除。
5.能被7整除:
①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除。
②逐次去掉最后一位數字并減去末位數字的2倍后能被7整除。
6.能被11整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。
②奇數位上的數字和與偶數位數的數字和的差能被11整除。
③逐次去掉最后一位數字并減去末位數字后能被11整除。
7.能被13整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。
②逐次去掉最后一位數字并減去末位數字的9倍后能被13整除。
三、整除的性質:
1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2.如果a能被b整除,c是整數,那么a乘以c也能被b整除。
3.如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數整除。
四、經典例題:
例、在1992后面補上三個數字,組成一個七位數,使它們分別能被2、3、5、11整除,這個七位數最小值是多少?
考點:數的整除特征.
分析:設補上的三個數字組成三位數是abc,由這個七位數能被2,5整除,說明c=0;由這個七位數能被3整除知1+9+9+2+a+b+c=21+a+b+c能被11整除,從而a+b能被3整除;再由這個七位數又能被11整除,可知(1+9+a+c)-(9+2+b)=a-b-1能被11整除;最后由所組成的七位數應該最小,因而取a+b=3,a-b=1,從而a=2,b=1.進而解答即可;
解答:解:設補上的三個數字組成三位數是abc,由這個七位數能被2,5整除,說明c=0;
由這個七位數能被3整除知1+9+9+2+a+b+c=21+a+b+c能被11整除,從而a+b能被3整除;
由這個七位數又能被11整除,可知(1+9+a+c)-(9+2+b)=a-b-1能被11整除;
由所組成的七位數應該最小,因而取a+b=3,a-b=1,從而a=2,b=1.
所以這個最小七位數是1992210.
[注]學生通常的解法是:根據這個七位數分別能被2,3,5,11整除的條件,這個七位數必定是2,3,5,11的公倍數,而2,3,5,11的最小公倍數是2×3×5×11=330.
這樣,1992000÷330=6036…120,因此符合題意的七位數應是(6036+1)倍的數,即1992000+(330-120)=1992210.
【小升初數學必考知識點 歸納】相關文章:
關于小升初數學必考知識點歸納06-11
小升初數學必考熱門知識點歸納10-02
小升初奧數必考知識點歸納07-26
小升初奧數必考知識點歸納匯總09-12
小升初英語10個必考知識點歸納09-29
2017小升初語文必考知識點歸納06-30
小升初數學必考知識點參考06-26
2017小升初必考英語知識點歸納09-21
2017小升初英語必考知識點歸納10-29